skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bianco, Colleen M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Bacteria use a multi-layered regulatory strategy to precisely and rapidly tune gene expression in response to environmental cues. Small RNAs (sRNAs) form an important layer of gene expression control and most act post-transcriptionally to control translation and stability of mRNAs. We have shown that at least five different sRNAs inEscherichia coliregulate the cyclopropane fatty acid synthase (cfa) mRNA. These sRNAs bind at different sites in the long 5’ untranslated region (UTR) ofcfamRNA and previous work suggested that they modulate RNase E-dependent mRNA turnover. Recently, thecfa5’ UTR was identified as a site of Rho-dependent transcription termination, leading us to hypothesize that the sRNAs might also regulatecfatranscription elongation. In this study we find that a pyrimidine-rich region flanked by sRNA binding sites in thecfa5’ UTR is required for premature Rho-dependent termination. We discovered that both the activating sRNA RydC and repressing sRNA CpxQ regulatecfaprimarily by modulating Rho-dependent termination ofcfatranscription, with only a minor effect on RNase E-mediated turnover ofcfamRNA. A stem-loop structure in thecfa5’ UTR sequesters the pyrimidine-rich region required for Rho-dependent termination. CpxQ binding to the 5’ portion of the stem increases Rho-dependent termination whereas RydC binding downstream of the stem decreases termination. These results reveal the versatile mechanisms sRNAs use to regulate target gene expression at transcriptional and post-transcriptional levels and demonstrate that regulation by sRNAs in long UTRs can involve modulation of transcription elongation. ImportanceBacteria respond to stress by rapidly regulating gene expression. Regulation can occur through control of messenger RNA (mRNA) production (transcription elongation), stability of mRNAs, or translation of mRNAs. Bacteria can use small RNAs (sRNAs) to regulate gene expression at each of these steps, but we often do not understand how this works at a molecular level. In this study, we find that sRNAs inEscherichia coliregulate gene expression at the level of transcription elongation by promoting or inhibiting transcription termination by a protein called Rho. These results help us understand new molecular mechanisms of gene expression regulation in bacteria. 
    more » « less